

Утв	ерждаю:	
Texi	нический	директор
		Тягнирядно С.А
‹ ‹	>>	2018 г.

КАМЕРЫ СБОРНЫЕ ОДНОСТОРОННЕГО ОБСЛУЖИВАНИЯ КСО-BLISS НА НАПРЯЖЕНИЕ 6÷10 кВ

Техническая информация РТФВ.000135.013

Контакт-центр

Телефон: +7(846) 953-72-99

Самара

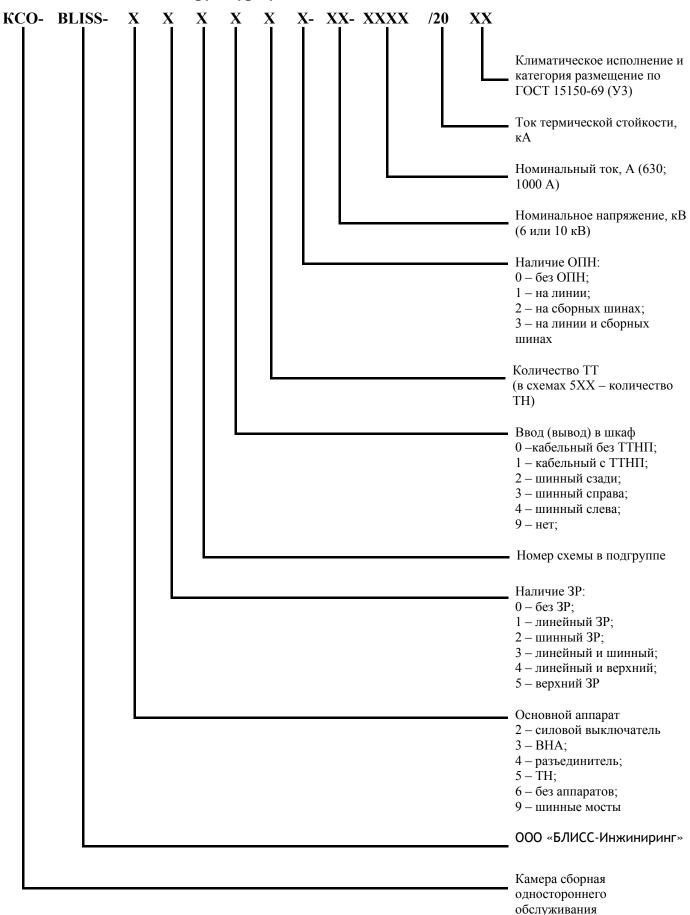
СОДЕРЖАНИЕ

1	Введение	3
2	Назначение и область применения	6
3	Основные параметры и технические характеристики	7
4	Принципиальные схемы электрических соединений главных и вспомогательных	K
цег	тей	.11
5	Краткое описание конструкции	.19
6	Классификация	.29
7	Энергоэффективность и энергосбережение	.30
8	Комплектность поставки	.30
9	Оформление заказа	.31
	Перечень сокращенных условных обозначений	.32

1 Введение

Настоящая техническая информация распространяется на камеры сборные одностороннего обслуживания КСО-BLISS (далее КСО) напряжением 6÷10 кВ и служит для ознакомления с принципом устройства, основными параметрами и характеристиками, конструкцией, комплектацией и правилами оформления заказа.

Изменения комплектующего оборудования либо отдельных конструктивных элементов, в том числе связанные с дальнейшим усовершенствованием конструкции, не влияющие на основные технические данные, установочные и присоединительные размеры, могут быть внесены в поставляемые KCO-BLISS без предварительных уведомлений.


Нормативная и техническая документация на КСО- BLISS были разработана в 2018 году. Серийный выпуск был освоен в 2018 году.

Структура условного обозначения камер КСО приведена ниже. Вместо традиционного номера схемы в структурном обозначении камеры введена нумерация из шести цифр, которая однозначно идентифицирует исполнение камеры по схеме электрических соединений главных цепей.

Терминология, принятая в настоящей ТИ при упоминании аппаратов и оборудования

Структура условного обозначения KCO-BLISS

Примеры условных обозначений камер KCO-BLISS:

Камера КСО с вакуумным выключателем (2), с заземляющими разъединителями над выключателем и на линии (4), с шинным разъединителем (1), кабельный ввод с ТНПП (1), с тремя трансформаторами тока (3), без ОПН (0), номинальным напряжением 6 кВ, номинальным током 630 А климатического исполнения У2:

KCO-BLISS-241130-6-630/20Y2 TY 27.12.10.190-003-28197487-2018

Камера КСО с выключателем нагрузки (3) с шинным заземляющим разъединителем (2), без линейного предохранителя (0), с кабельным вводом без ТТНП (0), с ОПН на линии и сборных шинах (3), напряжением 10 кВ, номинальным током 630 А, климатического исполнения У2:

KCO-BLISS-320003-10-630/20Y2 TY 27.12.10.190-003-28197487-2018

Камера КСО с трансформатором напряжения (5), с шинным и линейным заземляющим разъединителем (3), (09), с тремя трансформаторами напряжения (3), без ОПН (0), номинальным напряжением 6 кВ климатического исполнения У2:

KCO-BLISS-530930-6/20Y2 TY 27.12.10.190-003-28197487-2018

2 Назначение и область применения

КСО предназначены для приема и распределения электрической энергии переменного трехфазного тока промышленной частоты 50 Гц напряжением 6÷10 кВ.

КСО применяются в качестве распределительных пунктов городских и промышленных подстанций и других объектов народного хозяйства, а также могут применяться в качестве устройства высшего напряжения (УВН) для модернизированной КТП 10/0,4 кВ мощностью от 100 до 2500 кВА.

КСО предназначены для работы внутри помещения (климатические исполнения УЗ по ГОСТ 15150-69), при следующих условиях:

- высота над уровнем моря до 1000 м; допускается эксплуатация КСО на высоте над уровнем моря более 1000 м, при этом следует руководствоваться указаниями ГОСТ 8024-90, ГОСТ 1516.1-76 и ГОСТ 17516.1-90;
- нижнее значение температуры окружающего воздуха по ГОСТ 15150-69 и ГОСТ 15543.1-89:
 - о для исполнения У3 не ниже минус 40 °C;
 - тип атмосферы по ГОСТ 15150-69:
- о для исполнения У3 II тип (примерно соответствует атмосфере промышленных районов);

КСО не предназначено для эксплуатации в среде, подвергающейся усиленному загрязнению, действию газов, испарений и химических отложений, вредных для изоляции, а так же в среде, опасной в отношении взрыва и пожара.

Конструкция КСО сейсмостойка во всем диапазоне сейсмических воздействий землетрясения до 9 баллов по шкале MSK 64 включительно на уровне 00,0 м по ГОСТ 17516.1-90.

КСО соответствуют требованиям ТУ 27.12.10.190-003-28197487-2018

3 Основные параметры и технические характеристики

3.1 Основные показатели КСО-BLISS приведены в таблице 1.

Таблина 1

Наименование параметра	Значение параметра
1 Номинальное напряжение, кВ	6,0; 10,0
2 Наибольшее рабочее напряжение, кВ	7,2; 12,0
3 Номинальная частота, Гц	50
4 Номинальный ток главных цепей КСО	
• с выключателем нагрузки, А	630
• с вакуумным выключателем и разъединителем, А	630; 1000
5 Номинальный ток сборных шин, А	1000
6 Номинальный первичный ток встроенных трансформ	a- 50; 100; 150; 200; 300; 400;
торов тока, А	600; 800; 1000
7 Номинальная вторичная нагрузка, B·A:	
• обмотки для измерений	10
• обмотки для защиты	15
8 Номинальный ток отключения встроенного вакуумног	70
выключателя, кА	20
9 Номинальный ток отключения встроенного выключат	e- 630
ля нагрузки, А	030
10 Ток термической стойкости, кА	20*
11 Предельный сквозной ток камер (амплитудное знач	e- 51
ние), кА	31
12 Номинальное напряжение вспомогательных цепей пер	e- 220
менного и постоянного тока, В:	220
13 Ток плавкой вставки высоковольтного предохранител	ıя 2÷200
KCO, A	2.200
14 Время протекания тока термической стойкости, с:	
• камер с выключателем нагрузки	1
• остальных камер	3
• заземляющих разъединителей	1
15 Габаритные размеры камер, мм:	
а) высота:	
• камера с вакуумным выключателем;	2500
• остальных, при наличии счётчиков указательнь	2300
приборов, УТКЗ**;	
• остальных, только с клеммниками, ИНС**	2100
б) глубина (в основании)	800
в) ширина:	
• камер с вакуумным выключателем	800
• остальных камер	600
16 Масса камеры, кг, не более	600
* Стойкость камер определяется стойкостью встроенных транс	

^{*} Стойкость камер определяется стойкостью встроенных трансформаторов тока.

^{**} Высота камер в одном заказе одинакова, в соответствии с большей высотой входящих камер.

В таблице 2 приведено встроенное в КСО-BLISS оборудование.

Таблица 2

Наименование, изготовитель	Характеристики				
Коммутационные аппараты	Номинальный ток, А	Ток отключения, кА			
1 Выключатель вакуумный с электромагнитным приводом модуль коммутационный ISM15_LD_8	1000	20			
2 Выключатель нагрузки автогазовый ВНАПр-10/630-20 У2	630	630			
3 Разъединитель типа PB-10/630У3; PB3-10/630У3	630, 1000	-			
Трансформаторы тока*	Коэффициент трансформации	Ток термической стойкости (в течение 3 сек)/ток электродинамической стойкости, кА			
4 Трансформатор тока	20/5;	2/5;			
ТОЛ-НТ3-10-11 У2	30/5	3/7,5			
двух- и трёхобмоточные	50/5;	5/12,5;			
	75/5;	8/20			
	100/5;	10/25;			
	150/5;	16/40			
	200/5	20/50			
	300/5;	31,5/80			
	400/5÷1000/5	40/100			
Трансформаторы тока нулевой последова-	Внутренний диа-	Основные характе-			
тельности	метр, мм	ристики			
5 Трансформатор тока нулевой последова-		Номинальное напря-			
тельности	70	жение 0,66 кВ;			
ТЗЛК-0,66-1 У2	70	Ток термической			
ТЗЛК-0,66-2 У2	102	стойкости (1 сек)			
ТЗЛК-0,66-3 У2	125	140 A			
6 Трансформатор тока нулевой последова-		Номинальное напря-			
тельности разъемный	70	жение 0,66 кВ;			
ТЗЛКР -0,66-1 У2	70	Ток термической			
ТЗЛКР -0,66-2 У2	100	стойкости (1 сек)			
ТЗЛКР -0,66-3 У2	125	140 A			

Наименование, изготовитель	Характе	ристики			
Трансформаторы тока нулевой последова-	Внутренний диа-	Основные характе-			
тельности	метр, мм	ристики			
7 Трансформаторы тока нулевой последо-	• '	Номинальный ток 2			
вательности		или 20 А			
CSH-120	120	Коэффициент транс-			
CSH-200	200	формации 1/470			
Трансформаторы напряжения*					
8 Трансформатор напряжения со встроен-	Номинальное н				
ным предохранительным устройством одно- фазный	- первичной обмотки: 6, $10/\sqrt{3}$; $10.5/\sqrt{3}$; $11/\sqrt{3}$;	$/\sqrt{3}$; 6,3/ $\sqrt{3}$; 6,6/ $\sqrt{3}$;			
3НОЛ-6(10)-1У2	- основной вторичной о	бмотки: 0,1/√3;			
	- дополнительной вторичной обмотки: $0,1/3;$ $0,1$				
9 Трехфазная антирезонансная группа из-	Номинальное н	апряжение, кВ:			
мерительных трансформаторов напряжения	- первичной обмотки: 6	; 6,3; 6,6; 10; 10,5; 11			
НАЛИ-6(10)У2	- вторичной обмотки: 0	,1			
	Классы точности о	сновной вторичной			
	обмотки:				
	0,2; 0,5; 1,0; 3,0				
Трансформаторы собственных нужд*					
10 Трансформатор силовой малой мощности	Номинальное напряжение, кВ:				
ОЛС-0,63(1,25)/6(10) У2	 первичной обмотки: 6,3; 6,6; 10,5; 11 				
ОЛС-0,63 (1,25)/6(10)-1 У2 (со встроенным	- вторичной обмотки: 0,1; 0,209; 0,22; 0,231				
предохранительным устройством)		гь для напряжений 100			
	и 220 1	•			
11 Трансформатор собственных нужд	630,1250 Номинальное напряжение, кВ:				
ТЛС -40/6(10) У2	- первичной обмотки: 6; 6,3; 10; 10,5				
1310 -40/0(10) 32	- нервичной обмотки: 0, 0,5, 10, 10,5 - вторичной обмотки: 0,4				
	Номинальная м				
		0			
Предохранители*	Uном − 6 кВ	Uном - 10 кВ			
12 Предохранители типов	Номинальный ток	Номинальный ток			
ПКТ-101-6-(2÷20)-(20÷40)У3	отключения 20; 40 кА	отключения			
ПКТ-101-10-(2÷20)-(12,5÷31,5)У3	Номинальный ток	12,5, 31,5 кА			
	предохранителя	Номинальный ток			
	2; 3,2; 5; 8; 10; 16;	предохранителя			
	20 кА	2; 3,2; 5; 8; 10; 16; 20 κΑ			
13 Предохранители типов	Номинальный ток	Номинальный ток			
ПКТ-102-6-31,5÷50-31,5У3	отключения 31,5 кА	отключения 31,5 кА			
ПКТ-102-10-31,5÷40-31,5У3	Номинальный ток	Номинальный ток			
	предохранителя 31,5;	предохранителя 31,5;			
	40; 50 кА	40 кА			

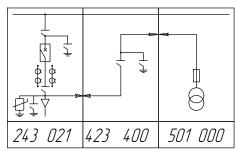
Наименование, изготовитель	Характ	геристики				
Предохранители*	Uном - 6кВ	Uном - 10 кВ				
14 Предохранители типов	Номинальный ток					
ПКТ-102-6-80÷50-20У3	отключения 20 кА					
	Номинальный ток					
	предохранителя 80 кА					
15 Предохранители типов	Номинальный ток	Номинальный ток				
ПКТ-103-6-80÷100-31,5У3	отключения 31,5 кА	отключения 31,5 кА				
ПКТ-103-10-50-31,5У3	Номинальный ток	Номинальный ток				
	предохранителя 80; 100 кА	предохранителя 50 кА				
16 Предохранители типов	Номинальный ток	Номинальный ток				
ПКТ-103-6-160-20У3	отключения 20 кА	отключения 20 кА				
ПКТ-103-10-80-20У3	Номинальный ток	Номинальный ток				
	предохранителя 160 кА	предохранителя 80 кА				
Ограничители перенапряжений*						
17 Ограничители перенапряжений	Наибольшее рабочее	длительно допустимое				
ОПНп-6/7,2	напряжение, кВ:	-				
ОПНп-10/12	при классе напряжения	сети 6 кВ −17,4;				
	при классе напряжения	сети 10 кВ - 29				
Индикаторы наличия напряжения						
18 Сигнализатор напряжения стационарный	Напряжение питания	от сети переменного				
ИН 3-10-00 УХЛЗ	тока частотой 5	0 Гц, В: 220 (36)				
	Напряжение пита	ния от резервного				
	источника посто	янного тока, В: 9				
	Возможность прове	дения фазировки «в				
	горячую»					
* Данное оборудование может быть устано	овлено и других организ	ваций-изготовителей по				

^{*} Данное оборудование может быть установлено и других организаций-изготовителей по требованию заказчика. Техническая служба готова рассмотреть возможность его размещения и при необходимости разработать специальное исполнение шкафов.

Новую и более подробную информацию о характеристиках применяемого оборудования следует получать из каталогов организаций-изготовителей.

4 Принципиальные схемы электрических соединений главных и вспомогательных цепей

4.1 Принципиальные схемы главных цепей приведены ниже в таблицах 4÷8 Схемы вспомогательных цепей разработаны на переменном и выпрямленном (постоянном) оперативном токе на напряжение оперативного питания 220 В.


Схемы могут быть выполнены на микропроцессорной, электронной и электромеханической основе. Варианты выполнения схем релейной защиты автоматики и их исполнения в зависимости от назначения ячеек КСО приведены в приложениях A и Б.

Аппаратура вспомогательных цепей размещается в релейных отсеках шкафов КСО и в шкафах НКУ.

При необходимости конструкторская служба готова разработать и изготовить камеры КСО по нетиповым схемам.

Таблица 3 - Примеры сочетания схем

ТСН на вводе

ТН на сборных шинах, СВ и СР

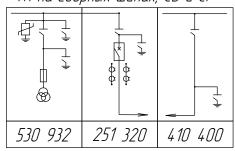


Таблица 4 - Камеры КСО-BLISS с вакуумным выключателем

	· P ·) ~ ·					
	242 = 2-	Выключате.	ль, 4– <i>3Р</i> нс	т <i>выключа</i> т	еле и линии,	2 – Шинны	й и линейнь	ий РВ,	
242 000	242 001	242 002	242 003	242 020	242 021	242 022	242 023	242 030	242 031
		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
242 032	242 033	242 100	242 101	242 102	242 103	242 120	242 121	242 122	242 123
242 130	242 131	242 132	242 133						

243 =	2- Выключа	тель, 4— <i>З</i> Р	на выключи	ателе и лин	ии, 3 – Шин	ный и линец	іный РВ, от	вод на ТСН	на вводе
*	Ţ		4			## HT			
₹ <u>}</u>	\$\$\$	₹ } →	\$\$\$ ▶	₹ <u>}</u>	\$ <u>\$</u>	₹ <u>}</u>	\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₹ <u>↓</u>	\$ <u>\$</u>
243 000*	243 001*	243 002*	243 003*	243 020*	243 021*	243 022*	243 023*	243 030	243 031
243 032	243 033	243 100*	243 101*	243 102*	243 103*	243 120*	243 121*	243 122*	243 123*
243 130	243 131	243 132	243 133						

	24	41 = 2- Выкі	лючатель, 4	.– <i>3Р на вы</i>	ключателе і	и линии, 1 –	Шинный РВ,	?	
A +					1			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
241 000	001	002	003	020	021	022	023	030	031
	### ### ##############################	90 EST	# ************************************	### FILE 1.4	### ### 		1/4.00. 1/4 -00. 00.		1.4 -0.0 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0
032	033	100	101	102	103	120	121	122	123
		### ### ### ### ### ### #### #########			# \text{\sqrt{\sq}\ext{\sqrt{\sq}}}}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}} \end{\sqrt{\sqrt{\sq}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sq}}}}}}}} \end{\sqrt{\sqrt{\sq}\end{\sqrt{\sqrt{\sqrt{\sqrt{\eq}}}}}}}}} \end{\sqrt{\sqrt{\sq}}}			***************************************	44 49 EA I
130	131	132	133	200*	201*	202*	203*	220*	221*
222*	223*	230*	231*	232*	233*				

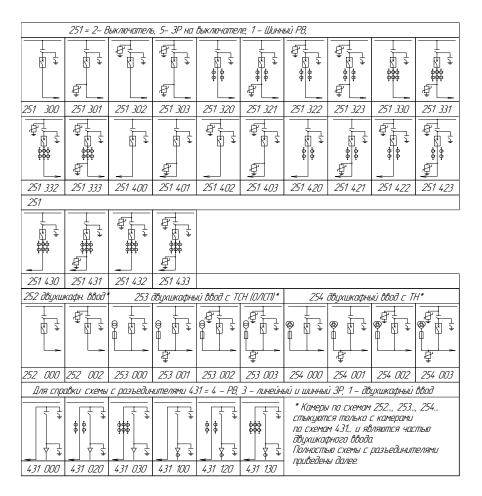
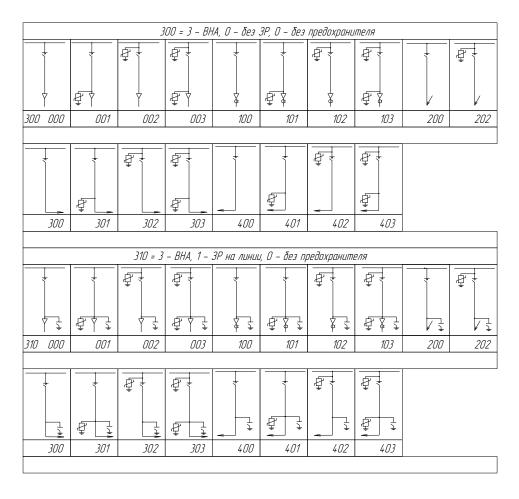
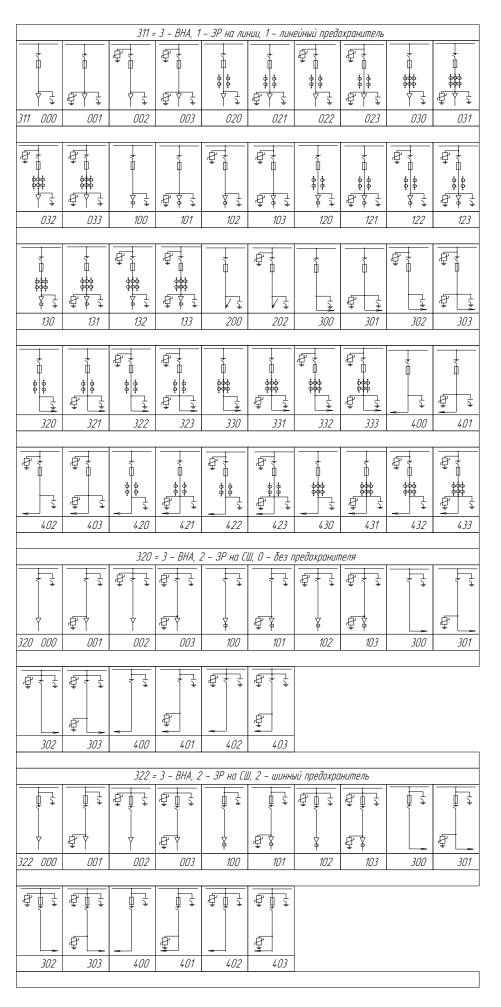
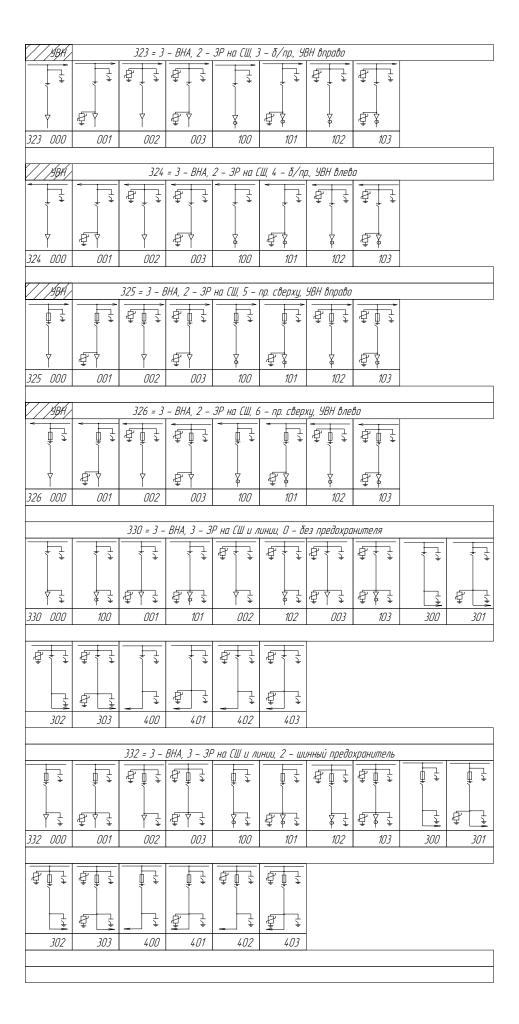
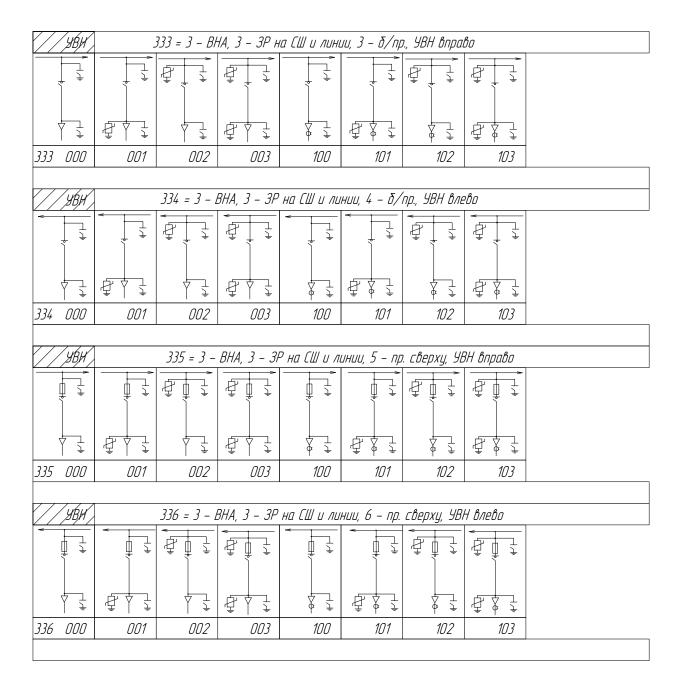






Таблица 5 - Камеры КСО-BLISS с выключателем нагрузки

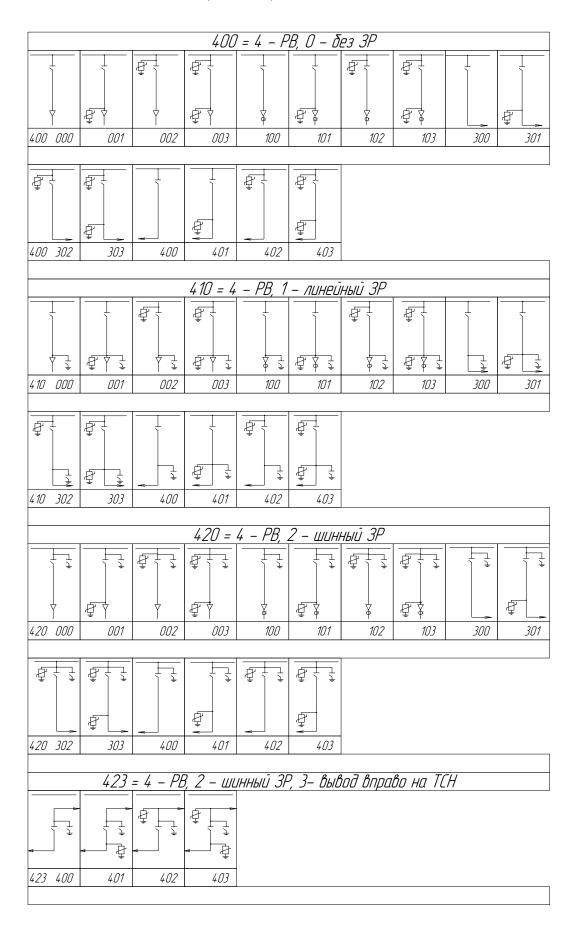


Таблица 6 - Камеры КСО-BLISS с разъединителем

Камеры КСО с разъединителем

Камера КСО с разъединителем

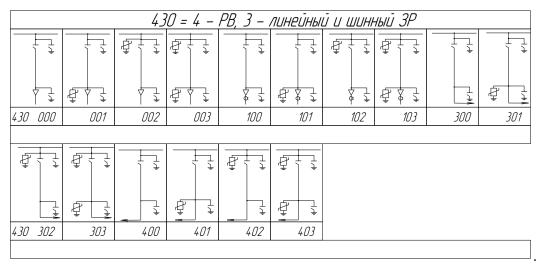


Таблица 7 - Камеры КСО с ТН, ТСН и другие

С ТРАНСФОРМАТОРАМИ НАПРЯЖЕНИЯ Й ТСН

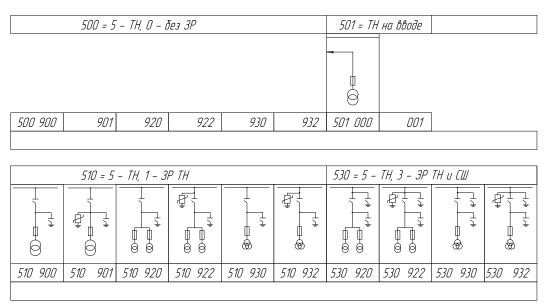
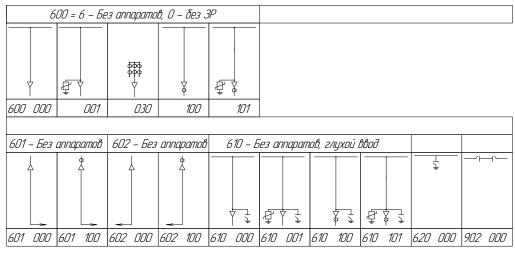



Таблица 8 - Камеры КСО без аппаратов

- 4.2 Порядок разработки и изготовления схем междушкафных связей
- 4.2.1 KCO-BLISS, Для предназначенных ДЛЯ размещения В модуле электротехнических блоков заводского изготовления, на предприятии-изготовителе схемы междушкафных И межпанельных междушкафных и межпанельных схем выполняется в пределах транспортных блоков, при этом по междушкафным связям увязывается только оборудование заводского производства и покупное — шкафы постоянного тока (ШУОТ, АУОТ, ШОТ и т.д.). Для увязки другого покупного оборудования (УКРМ, ТСН, панели защит, панели ТМ, УБПВД и др.) потребитель должен заказать у предприятия-изготовителя КСО-BLISS или в другом месте кабельный журнал. Необходимость приобретения кабельного журнала у предприятия-изготовителя следует отразить в технических требованиях в опросном листе на заказ.

Для увязки схемы электромагнитной блокировки по междушкафным связям необходимо предоставить общую принципиальную схему электромагнитной блокировки.

При наличии в заказе стороны 6(10) кВ и КТП BLISS 6(10)/0,4 кВ необходимо указать связи между высокой и низкой стороной по силовым и контрольным цепям для учета их в схеме междушкафной связи.

Для КСО-BLISS, предназначенного для установки в помещениях другого типа, по дополнительному требованию предприятием-изготовителем (разработчиком) схем может быть разработана и выполнена проводом ПВ3 схема междушкафных связей для оборудования заводского производства и покупного — шкафов постоянного тока (ШУОТ, АУОТ, ШОТ и т.д.).

Монтаж такой схемы должен осуществляться на месте монтажа объекта, при этом по дополнительному требованию в комплект заводской поставки может быть включен комплект для монтажа схемы: провода, сшивки, трубка, наконечники и т.д. Жгуты проводов для схемы междушкафных связей на предприятии-изготовителе КСО не выполняются.

Для увязки схемы электромагнитной блокировки по междушкафным связям необходимо предоставить общую принципиальную схему электромагнитной блокировки.

5 Краткое описание конструкции

Распределительное устройство KCO-BLISS состоит из состыкованных камер цельнометаллической конструкции, в пределах каждой камеры основные цепи собраны по одной из схем (представлены выше в таблицах 4-8), смонтированы все аппараты, приборы измерения, релейной защиты, автоматики, сигнализации и управления.

На рисунке 1 приведено устройство камер КСО-BLISS с вакуумным выключателем.

Kamepa no cxeme 242 030

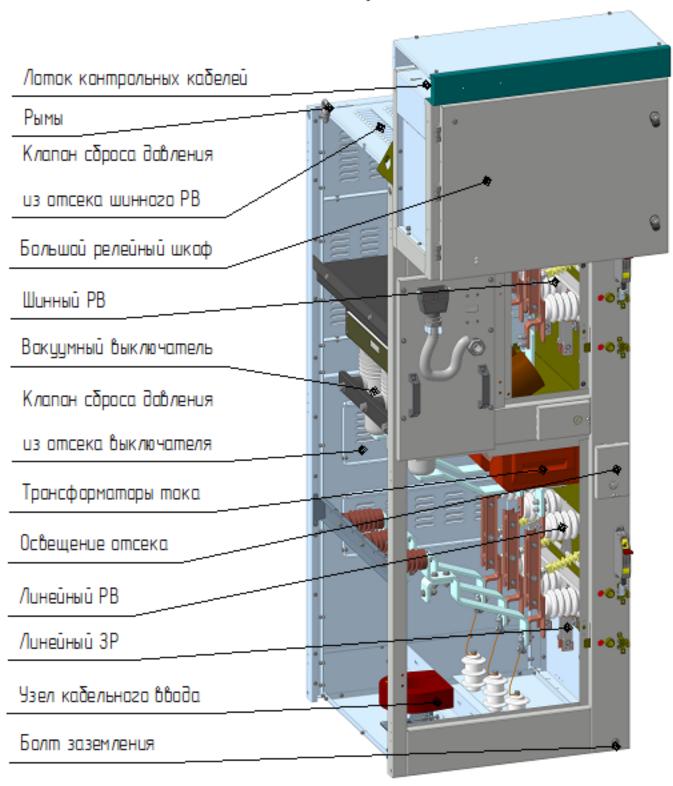


Рисунок 1 – Внутреннее устройство камеры KCO-BLISS с вакуумным выключателем

KCO-BLISS поставляются заказчику отдельными камерами либо транспортными блоками до трёх камер в блоке со смонтированными в пределах блока соединениями главных и вспомогательных цепей, с элементами стыковки камер и блоков в распредустройство.

Присоединения (вводы или выводы) могут быть как кабельными (предпочтительно), так и шинными. Шинный ввод (вывод) в камеры выполняется шинопроводом через проходные изоляторы на задней или на боковой стенке. Любые боковые выводы из камер KCO-BLISS осуществляются через проходные изоляторы типа ИП-10.

Фундамент под камеры KCO-BLISS выполняется в одном уровне. Камеры устанавливаются на закладные элементы фундамента и привариваются к ним через 4 отверстия в каждой камере.

Кабельный ввод в камеру KCO-BLISS осуществляется через кабельные каналы снизу камеры и с подсоединением внутри камеры. Конструкция камеры позволяет подключать не более двух трёхжильных высоковольтных кабелей сечением 240 мм² или трёх одножильных высоковольтных кабелей сечением до 630 мм².

Установка КСО на фундамент и разметка отверстий для ввода высоковольтных кабелей – смотри рисунок 3. СМ рабочий стол

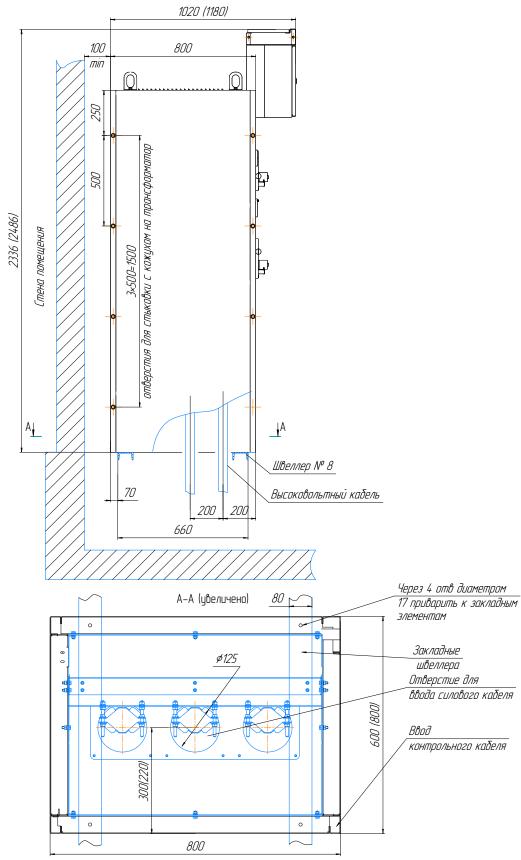


Рисунок 2 — Габариты и установка КСО-BLISS на фундамент (в скобках приведены размеры для камер с вакуумным выключателем)

Заземление камер выполняется подсоединением шинок заземления к основанию камер с помощью болта заземления. Металлические части встроенного оборудования и доступные прикосновению металлические конструкции имеют электрический контакт с каркасами камер КСО посредством шинок заземления или зубчатых шайб.

Камера КСО-BLISS (рисунок 1) собрана из листовых панелей толщиной 2-3 мм, внутренние и задние панели выполнены из оцинкованного металла, фасадные детали защищены от коррозии полимерным лакокрасочным покрытием.

С фасада имеются дверки для доступа к оборудованию со смотровыми окошками. Разъединители, заземляющие разъединители и выключатели нагрузки размещены на правой стенке камеры, фазами вглубь шкафа. Привод этих аппаратов осуществляется шестигранной рукояткой, вставляющейся непосредственно в отверстие с торца вала аппарата, что исключает передаточные звенья и повышает надёжность.

Приводы имеют фиксированные включенное и отключенное положения с возможностью запирания в любом из них на навесной замок, и имеют указатели положения. На приводах предусмотрена возможность установки электромагнитных блокировочных замков. На валах силового выключателя, выключателя нагрузки, разъединителя и заземляющего разъединителя установлены концевые выключатели, с помощью которых контролируется состояние аппаратов (по требованию заказчика).

Конструкция камер KCO-BLISS обеспечивает локализацию аварии при возникновении короткого замыкания внутри отсеков камеры.

Дуговая защита камер (по требованию заказчика) (кроме камер с ВНА) выполнена с использованием разгрузочных клапанов избыточного давления (находятся на крыше и задней стенке камер) и чувствительных элементов дуговой защиты и обеспечивает отключение дуговых коротких замыканий внутри КСО при величине тока дуги 500 А и более. Время ограничения действия дуги короткого замыкания не превышает 0,2 с.

Дуговая защита камер КСО с выключателями нагрузки выполнена на основе клапанов разгрузки избыточного давления.

Сборные шины расположены в верхней части камеры в одной горизонтальной плоскости, ближняя к фасаду — шина фазы С, средняя — фазы В и дальняя — фазы А. Доступ к сборным шинам осуществляется через крышу или через верхнюю фасадную дверку.

В правой боковой панели каждой камеры расположены проходные изоляторы, сквозь которые и пропущены сборные шины, таким образом осуществляется полная локализация отдельной камеры; как такового общего отсека сборных шин в КСО-BLISS нет (рисунок 1, 4).

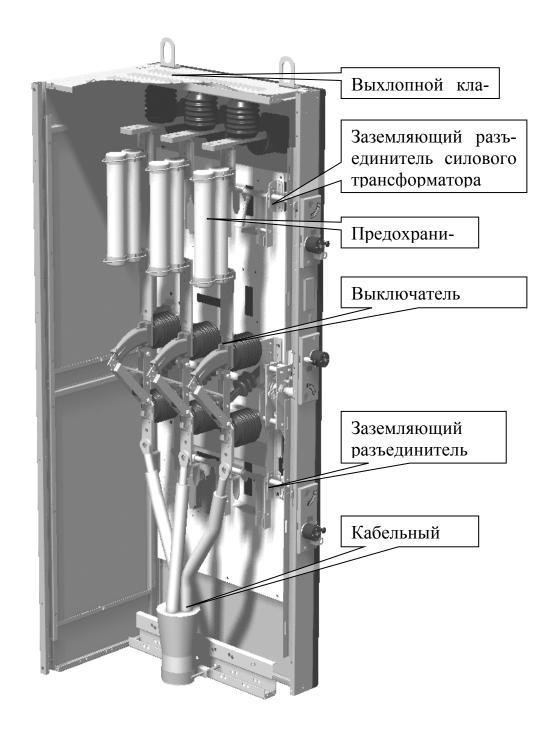


Рисунок 3 – Разрез камеры KCO-BLISSc автогазовым выключателем нагрузки BHA (схема 332 100)

В остальном конструкция камер может быть двух типов в зависимости от наличия в их схеме вакуумного выключателя:

1 Камеры без вакуумного выключателя (с BHA: KCO-BLISS-3..., с разъединителем: KCO-BLISS-4..., с TH: KCO-BLISS-5...) имеют ширину по фасаду 600 мм и в рабочем положении (силовой аппарат включен) представляют собой один отсек, в котором расположены:

сборные шины (та часть, что попадает в данный шкаф);

- шины камеры к аппаратам;
- силовой аппарат, заземляющие разъединители;
- трансформаторы тока;
- узел разделки кабеля, вывод вбок, назад, либо ТН.

- 2 Камеры с вакуумным выключателем (КСО- КСО-BLISS-2...) имеют ширину 800 мм и разделены стационарной металлической перегородкой на 2 отсека, связанных шинами через проходные изоляторы:
- отсек шинного разъединителя, в котором размещены часть сборных шин, шинный разъединитель и верхний заземляющий разъединитель. Конструктивно в этих камерах невозможна установка заземляющего разъединителя сборных шин, заземление должно осуществляться в соседних шкафах без выключателя;
- отсек выключателя, вмещающий вакуумный выключатель, трансформаторы тока, линейные разъединитель и заземляющий разъединитель и узел кабельного или шинного ввода.

Для камер отходящих линий рекомендуется использовать схемы без линейного разъединителя (KCO-BLISS-241) – это увеличивает объём под разделку кабеля.

Вакуумный выключатель стационарно установлен в камере. Управление им осуществляется с фасада привода либо с двери релейного шкафа. Электрическая связь привода и релейного шкафа осуществляется через разъёмы Хартинг (Феникс контакт). Для ремонта выключателя откручиваются 9 болтов присоединения шин и 6 болтов крепления, и выключатель выдвигается по горизонтальным направляющим из шкафа.

В КСО-BLISS выполнен ряд внутренних механических блокировок в пределах одной камеры, не позволяющих произвести неверные действия:

- невозможно включить заземляющие ножи и открыть дверь отсека при включённом разъединителе или ВНА;
- невозможно открыть дверь отсека, пока в этом отсеке не включен нож заземляющего разъединителя (если заземляющего разъединителя нет, то дверь выполнена на болтах);
- невозможно отключить нож заземляющего разъединителя, пока открыта дверка отсека;
- невозможно включить разъединитель или ВНА при включенных заземляющих ножах, открытой двери;
- невозможно отключить или включить разъединитель при включённом вакуумном выключателе своей камеры.

Общая схема блокировки распредустройства выполняется на электромагнитных блок-замках.

При выполнении РУ исключительно из камер KCO-BLISS без вакуумных выключателей возможно применение механической блокировки с помощью блокировочных замков типа Генодмана.

Во всех отсеках КСО-BLISS имеется стационарное освещение.

В состав КСО-BLISS в зависимости от конкретного заказа могут входить:

- шинные мосты между двумя рядами камер, расположенными в одном помещении;
- шинные вводы;
- шинные перемычки;
- переходные шкафы для стыковки с КСО других серий;
- запасные части и приспособления.

На шинах ввода (линии) и в сборных шинах установлены датчики сигнализатора напряжения (по требованию заказчика). Блок сигнализации наличия напряжения расположен в релейном шкафу либо на его двери и позволяет убедиться в отсутствии напряжения перед выполнением операций с заземляющими разъединителями.

Ввод контрольных кабелей в шкафы осуществляется сверху через кабельные лотки в верхней части шкафа.

В камерах предусмотрена возможность установки 3-х или 6-ти ограничителей перенапряжений (ОПН) по схеме «фаза-земля». Тип ОПН и необходимость их

применения должны указываться проектной организацией в зависимости от параметров сети.

<u>Внимание!</u> KCO-BLISS является устройством одностороннего обслуживания. Со стороны задних стенок шкафов доступ к оборудованию под напряжением не ограничен! Нахождение с задней стороны работающего распредустройства опасно для жизни! Если проход сзади необходим, следует закрывать доступ в него ограждением по торцам распредустройства.

Релейный шкаф изготавливается в 4-х вариантах, в зависимости от схем основных и вспомогательных цепей, причём в пределах одного РУ устанавливаются релейные шкафы одного типа, релейным шкафом определяется общая высота распредустройства (рисунок 5).

Камера по схеме 242 030 Камера по схеме 330 001

Рисунок 4 — Камеры с вакуумным выключателем и с разъединителем (условно поставлены рядом, с разными релейными шкафами)

В камерах с вакуумным выключателем (с большим релейным шкафом) для удобства считывания показаний счётчик установлен на откидной панели-дверке отсека шинного разъединителя. В таблице 9 приведены варианты релейных шкафов КСО-BLISS.

Распредустройство из шкафов KCO-BLISS может размещаться в модульном здании заводского изготовления и поставляться заказчику со смонтированными в пределах каждого транспортного модуля главными и вспомогательными цепями. Возможно изготовление КТП с KCO-BLISS в качестве УВН

6 Классификация

Классификация исполнений соответствует указанной в таблице 10

Таблица 9

Н	аименование показателя классификации	Исполнение
1	Изоляция по ГОСТ 1516.3-96	Нормальная, уровень «б»
2	Вид изоляции	Воздушная
3	Наличие изоляции токоведущих шин глав-	С неизолированными шинами
1	к цепей	1
4	Степень защиты камеры со стороны фасада	IP30
ИТС	рцевого элемента по ГОСТ 14254-96	11 30
5	Условия обслуживания	С односторонним обслуживанием
6	Наличие выкатных элементов в КСО	Без выкатных элементов
7	Наличие дверей в высоковольтном отсеке	Шкафы КСО с дверями
8	Вид линейных высоковольтных присоеди-	Кабельные
нен	ий	Шинные
		С вакуумным выключателем;
		С выключателями нагрузки;
9	Dur tough VCO p approximation of parmauna	С разъединителями;
_	Вид камер КСО в зависимости от встраива-	С силовыми предохранителями;
емо	и аппаратуры и присоединении	С трансформаторами тока;
		С трансформаторами напряжения;
		Комбинированные
10	Вид управления	Местное

7 Энергоэффективность и энергосбережение

ООО «БЛИСС-Инжиниринг» уделяет огромное внимание энергоэффективности выпускаемой продукции.

KCO-BLISS не является исключением, и в данном распредустройстве работа произведена по нескольким направлениям:

- 1) снижение потерь при непосредственной передаче электроэнергии:
- сведено к минимуму количество разборных контактных соединений;
- все контактные соединения имеют гальваническое покрытие для предотвращения ухудшения свойств в процессе эксплуатации.
- 2) снижение затрат электроэнергии при эксплуатации КСО (автоматически отключающийся обогрев релейных шкафов).
 - 3) снижение затрат, связанных с авариями, недоотпуском электроэнергии:
- дуговая защита на оптоволоконных датчиках снижает до минимума время воздействия открытой дуги, исключительно селективна, практически исключает ложные срабатывания;
- разделение шкафа на отсеки уменьшает зону повреждения при дуговом коротком замыкании в шкафу.
 - 4) снижение затрат на ремонт и эксплуатацию оборудования.

Потери в KCO-BLISS составляют не более 0,088% от передаваемой мощности, что соответствует критерию энергоэффективности оборудования.

8 Комплектность поставки

В комплект поставки KCO-BLISS входят камеры, шинопроводы и составные части KCO согласно ведомости комплектации конкретного заказа, запасные части и принадлежности согласно ведомости ЗИП.

К комплекту КСО должна прикладываться следующая документация:

- паспорт на изделие 1 экз.;
- руководство по эксплуатации на изделие 1 экз.;
- схемы электрических соединений главных цепей конкретного заказа (опросный лист) -1 экз.;
- \bullet схемы электрических соединений вспомогательных цепей исполненного заказа 1 экз.;
- комплект руководств по эксплуатации на комплектующее оборудование, встроенное в КСО, конкретного заказа -1 экз.;
 - ведомость ЗИП 1 экз.;
 - ведомость эксплуатационных документов 1 экз.;
 - комплектовочная ведомость 1 экз.

Дополнительные требования по комплектности устанавливаются в соответствие с конкретными контрактами.

9 Оформление заказа

Заказ на изготовление KCO-BLISS оформляется в виде опросного листа установленной формы (рисунок 6).

Основные параметры Наминальное напряжение — кВ Номинальный ток сборных шин A Оперативный ток отключения выключателя - 20кА № камеры Тип шкафа КСО-BLISS Номинальный ток, A	І секці	IA	+	// секция	
Номинальный ток сборных шинA Оперативный ток220B Номинальный ток отключения выключателя - 20кА № камеры Тип шкафа КСО-BLISS					
Оперативный ток —					
Номинальный ток отключения выключателя - 20кА N° камеры Тип шкафа KCO-BLISS					
№ камеры Тип шкафа КСО-BLISS					
Тип шкафа KCO-BLISS					
,					
Париановно камори					
Назначение камеры Тип коммутационного модуля					
ISM15_LD_8					
Блок управления TER_CM_16_2					
Выключатель нагрузки ВНА-10/20 У2					
Трансформатор тока ТОЛ-10 кл .точности					
кл .точности					
Ограничители перенапряжения 					
Тип микропроцессорной защиты					
Блок питания					
Индикатор наличия напряжения			\perp		
Электромагнитная блокировка			\bot		
Механическая блокировка					
Дуговая защита					
Амперметр					
Количество и сечение кабеля					
Схема вторичных соединений					

Рисунок 5 – Форма опросного листа на KCO-BLISS

В тексте применены следующие сокращённые обозначения:

ABP – автоматическое включение резерва;

ВВ – вакуумный выключатель;

ВНА – выключатель нагрузки автогазовый;

3Д3 – защита от дуговых замыканий;

3Р – заземляющий разъединитель;

КТП- П – комплектная промышленная трансформаторная подстанция;

КТП-А – комплектная трансформаторная подстанция с аварийным вводом от дизель-генератора;

КТП-СН – комплектная трансформаторная подстанция собственных нужд;

КТП- Г – комплектная трансформаторная подстанция городского типа;

МПУ – микропроцессорное устройство;

МТЗ – максимальная токовая защита;

ОПН – ограничитель перенапряжения;

РВ – разъединитель внутренней установки;

РЗА – Рейная Защита и Автоматика;

РСН – распределение собственных нужд;

РУ – распределительное устройство;

СВ – секционный выключатель;

СР – секционный разъединитель;

ТН – трансформатор напряжения;

ТТНП – трансформатор тока нулевой последовательности;

ТСН – трансформатор собственных нужд;

TT – трансформатор тока;

УВН – устройство высшего напряжения;

УТКЗ - указатель прохождения тока короткого замыкания;

Шкаф линии к АД – шкаф линии к асинхронному двигателю;

Шкаф линии к КУ – шкаф линии к конденсаторной установке;

Шкаф ввода для РП – шкаф ввода для распределительного пункта;

Шкаф ЦС – шкаф центральной сигнализации.

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

	№№ листов (с	Всего		Вход			
Изм.	Замененных	Аннулиро- ванных	листов, страниц в докум.	№№ докум	Номер сопров. докум.	Подпись	Дата